Génération augmentée d'information applicative (GAIA)


Révision datée du 5 mai 2025 à 15:15 par Pitpitt (discussion | contributions)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

Définition

Méthode d'adaptation et de peaufinage des résultats d'un grand modèle de langues par enrichissement des requêtes génératives avec des sources d'informations externes et à jour afin de générer des résultats plus précis et plus utiles.

Compléments

L'algorithme GAIA ne touche pas au grand modèle de langues, mais enrichit la requête générative d'extraits pertinents à cette requête provenant de la documentation de l'application.

Dans une phase préalable, l'algorithme GAIA prépare la documentation de l'application en la divisant en morceaux qui sont indexés avec des vecteurs sémantiques contextuels compacts (en anglais, embeddings). Ces vecteurs sémantiques compacts sont stockés dans une base de données vectorielles.

Puis lorsqu'un utilisateur fait une requête, l'algorithme GAIA encode celle-ci avec les mêmes vecteurs sémantiques compacts puis on retrouve et filtre les extraits des documents pour retenir ceux qui ont une forte proximité sémantique avec la requête en appliquant une mesure de similarité du genre métrique cosinus. Plus précisément, ces extraits sont ajoutés au contexte de la requête. Enfin, l'algorithme GAIA soumet la requête enrichie au robot conversationnel génératif et à son grand modèle de langues leur fournissant ainsi un contexte permettant de mieux répondre à la requête.

Français

génération augmentée d'information applicative

GAIA

génération augmentée d'information contextuelle

GAIC

adaptation par enrichissement contextuel

AEC

peaufinage par enrichissement contextuel

PEC

enrichissement contextuel

génération augmentée par récupération

Anglais

retrieval augmented generation

RAG

Sources

Source : towardsdatascience

Source : research.ibm.com

Source: Meta