Apprentissage par renforcement vérifiable


Révision datée du 7 octobre 2025 à 15:29 par Patrickdrouin (discussion | contributions) (Page créée avec « == En construction == == Définition == Reinforcement learning (RL) in verifiable domains uses models that learn to solve problems in areas like programming and math by receiving feedback (rewards or penalties) on their performance, which is verified by external systems. This approach enhances AI reasoning capabilities by allowing agents to test their own solutions, learn from mistakes, and improve through a self-correcting cycle, leading to emergent behaviors a... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

En construction

Définition

Reinforcement learning (RL) in verifiable domains uses models that learn to solve problems in areas like programming and math by receiving feedback (rewards or penalties) on their performance, which is verified by external systems. This approach enhances AI reasoning capabilities by allowing agents to test their own solutions, learn from mistakes, and improve through a self-correcting cycle, leading to emergent behaviors and sophisticated problem-solving skills.


Compléments

Ce ne sont pas les récompenses qui sont vérifiables, mais les résultats de l'apprentissage. C'est pour cette raison que nous proposons apprentissage par renforcement à partir de résultats vérifiables.

Français

apprentissage par renforcement à partir de résultats vérifiables

apprentissage par renforcement vérifiable

apprentissage par renforcement à partir de récompenses vérifiables (traduction littérale)

Anglais

reinforcement learning with verifiable rewards

RLVR

verifiable reinforcement learning

reinforcement learning in verifiable domains

VRL

Sources

Wen et al. (2025) - reinforcement learning with verifiable rewards