« Théorème de Kantorovich » : différence entre les versions
m (Remplacement de texte : « [http://isi.cbs.nl/glossary/ » par «  [https://www.isi-web.org/glossary?language=2  Source : ISI Glossaire ]  [https://isi.cbs.nl/glossary/  »)  | 
				m (Remplacement de texte : « [https://isi.cbs.nl/glossary/↵term » par « [https://isi.cbs.nl/glossary/term »)  | 
				||
| Ligne 18 : | Ligne 18 : | ||
[https://www.isi-web.org/glossary?language=2  Source : ISI Glossaire ]  | [https://www.isi-web.org/glossary?language=2  Source : ISI Glossaire ]  | ||
[https://isi.cbs.nl/glossary/  | [https://isi.cbs.nl/glossary/term1763.htm  Source : ISI ]  | ||
term1763.htm  Source : ISI ]  | |||
[https://en.wikipedia.org/wiki/Kantorovich_theorem#:~:text=The%20Kantorovich%20theorem%2C%20or%20Newton%E2%80%93Kantorovich%20theorem%2C%20is%20a,of%20a%20zero%20rather%20than%20a%20fixed%20point.   Source : Wikipédia ]    | [https://en.wikipedia.org/wiki/Kantorovich_theorem#:~:text=The%20Kantorovich%20theorem%2C%20or%20Newton%E2%80%93Kantorovich%20theorem%2C%20is%20a,of%20a%20zero%20rather%20than%20a%20fixed%20point.   Source : Wikipédia ]    | ||
Dernière version du 11 février 2024 à 17:34
Définition
Le théorème de Kantorovich, ou théorème de Newton-Kantorovich, est un énoncé mathématique sur la convergence semi-locale de la méthode de Newton. Il a été énoncé pour la première fois par Leonid Kantorovich en 1948. Il est similaire à la forme du théorème du point fixe de Banach, bien qu'il énonce l'existence et l'unicité d'un zéro plutôt que d'un point fixe.
Français
théorème de Kantorovitch
théorème de Newton-Kantorovich
Anglais
Kantorovitch's theorem
Newton–Kantorovich theorem
Sources
Contributeurs: Claire Gorjux, wiki
		
		 
	

 

 
