« Classification naïve bayésienne multinomiale » : différence entre les versions
|  (Page créée avec « ==en construction==  == Définition == XXXXXXXXX  == Français == ''' XXXXXXXXX '''  == Anglais == ''' Multinomial naïve Bayes'''  With a multinomial event model, samples... ») | m (Patrickdrouin a déplacé la page Multinomial Naive Bayes vers Multinomial Naive Bayes Classifier) | 
| (Aucune différence) | |
Version du 28 avril 2023 à 14:50
en construction
Définition
XXXXXXXXX
Français
XXXXXXXXX
Anglais
Multinomial naïve Bayes
With a multinomial event model, samples (feature vectors) represent the frequencies with which certain events have been generated by a multinomial {\displaystyle (p_{1},\dots ,p_{n})}(p_1, \dots, p_n) where {\displaystyle p_{i}}p_{i} is the probability that event i occurs (or K such multinomials in the multiclass case). A feature vector {\displaystyle \mathbf {x} =(x_{1},\dots ,x_{n})}{\mathbf {x}}=(x_{1},\dots ,x_{n}) is then a histogram, with {\displaystyle x_{i}}x_{i} counting the number of times event i was observed in a particular instance. This is the event model typically used for document classification, with events representing the occurrence of a word in a single document (see bag of words assumption). The likelihood of observing a histogram x is given by
Contributeurs: Patrick Drouin, wiki
 
		
		 
	


 
 

 
 

 
  
 