« Table Augmented Generation » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
Ligne 1 : Ligne 1 :
== en construction ==
== en construction ==


== Définition ==
XXXXXXXX


== Définition ==
Voir aussi '''[[biais]]''', '''[[données structurées]]''', '''[[traitement automatique de la langue naturelle]]''' et '''[[réseau antagoniste génératif]]'''


== Français ==
== Français ==
Ligne 22 : Ligne 24 :
==Sources==
==Sources==


[https://arxiv.org/pdf/2408.14717 Source : arxiv]
[https://www.arionresearch.com/blog/fe1i3sexqq9ggiattox9ds4lq2k7pa  Source : Arion Research LLC ]
 
[https://arxiv.org/abs/2408.14717   Source : arxiv]


[https://www.arionresearch.com/blog/fe1i3sexqq9ggiattox9ds4lq2k7pa  Source : arionresearch ]
[https://medium.com/@akssyd/table-augmented-generation-tag-a-paradigm-shift-in-ai-driven-data-queries-4f282fd59fd9  Source : Medium]




[[Catégorie:vocabulary]]
[[Catégorie:vocabulary]]

Version du 27 mai 2025 à 15:29

en construction

Définition

XXXXXXXX

Voir aussi biais, données structurées, traitement automatique de la langue naturelle et réseau antagoniste génératif

Français

xxxxx

Anglais

Table Augmented Generation

TAG

Table Augmented Generation (TAG) is a new approach in natural language processing (NLP) that merges structured data, such as tables, with text generation models. The goal of TAG is to enhance the accuracy, relevance, and depth of machine-generated content by allowing models to reference and reason over tabular data. By integrating tables into the generation process, TAG can significantly improve outputs in areas like report generation, business intelligence, and customer service, where both numerical and textual information are crucial.

In practice, Table Augmented Generation enables models to draw insights from data in tables and blend them seamlessly into narratives. This ability to reference specific data points helps to produce more informed and contextually relevant text, reducing factual inaccuracies or inconsistencies. As a result, industries that rely on data-heavy reports, such as finance, healthcare, and market analysis, can benefit from automating content generation without sacrificing precision.

TAG represents a leap forward for AI by bridging the gap between unstructured text generation and structured data interpretation, opening up new possibilities for data-driven storytelling and decision-making.


Sources

Source : Arion Research LLC

Source : arxiv

Source : Medium

Contributeurs: Arianne , wiki