« Recalibrage des attributs » : différence entre les versions


Aucun résumé des modifications
Aucun résumé des modifications
 
(22 versions intermédiaires par 5 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
__NOTOC__
== Domaine ==
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:Vocabulaire2]]
[[Category:Google2]]
[[Category:Apprentissage profond2]]
[[Category:scotty2]]
<br />
== Définition ==
== Définition ==
Pratique couramment utilisée dans l'extraction de caractéristiques pour faire correspondre la plage de valeurs d'une caractéristique à celle d'autres caractéristiques de l'ensemble de données. Supposons que vous souhaitiez que la plage de toutes les caractéristiques à virgule flottante de l'ensemble de données s'étende de 0 à 1. Si la plage d'une caractéristique particulière s'étend de 0 à 500, vous pouvez mettre à l'échelle cette valeur en divisant chaque valeur par 500.
Pratique couramment utilisée dans l'[[extraction d'attributs]] pour faire correspondre la plage de valeurs d'un [[attribut]] à celle d'autres attributs de l'ensemble de données.  


Voir aussi '''normalisation'''.
== Compléments ==
Supposons que vous souhaitiez que la plage de tous les attributs à virgule flottante de l'ensemble de données s'étende de 0 à 255. Si la plage d'un attribut particulier s'étend de 0 à 500, vous pouvez mettre à l'échelle cette valeur par une simple règle de trois (ou produit croisé). Dans un tel cas, l'opération se nomme '''[[transformation min-max]]'''.


Dans le cas où les valeurs sont ramenées sur une échelle de -1 à 1 ou de 0 à 1, on parle plutôt de '''[[normalisation]]'''.


<br />
Dans le contexte des performances d'un [[modèle d'apprentissage]] voir [[loi d'échelle]].


== Français ==
== Français ==
=== mise à l'échelle  <small>n.f.</small> ===
'''recalibrage des attributs'''


'''mise à l'échelle des attributs'''


<br />
'''changement d'échelle des attributs'''


== Anglais ==
== Anglais ==
'''feature scaling'''
'''scaling'''


===  scaling===
==Sources==
[https://www.dunod.com/sciences-techniques/machine-learning-avec-scikit-learn-mise-en-oeuvre-et-cas-concrets-1 Livre - Aurélien Géron, trad. Anne Bohy - ''Machine Learning avec Scikit-Learn - Mise en oeuvre et cas concrets'' - recalibrage des attributs]


<br/>
[https://developers.google.com/machine-learning/glossary/  Source : Google machine learning glossary ]
<br/>
<br/>
[https://developers.google.com/machine-learning/glossary/  Source: Google machine learning glossary ]
<br/>
<br/>[https://datafranca.org/lexique/mise-a-lechelle/        ''Publié : datafranca.org'' ]
<br/>
<br/>


<br/>
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Category:Apprentissage profond]]

Dernière version du 19 septembre 2025 à 20:27

Définition

Pratique couramment utilisée dans l'extraction d'attributs pour faire correspondre la plage de valeurs d'un attribut à celle d'autres attributs de l'ensemble de données.

Compléments

Supposons que vous souhaitiez que la plage de tous les attributs à virgule flottante de l'ensemble de données s'étende de 0 à 255. Si la plage d'un attribut particulier s'étend de 0 à 500, vous pouvez mettre à l'échelle cette valeur par une simple règle de trois (ou produit croisé). Dans un tel cas, l'opération se nomme transformation min-max.

Dans le cas où les valeurs sont ramenées sur une échelle de -1 à 1 ou de 0 à 1, on parle plutôt de normalisation.

Dans le contexte des performances d'un modèle d'apprentissage voir loi d'échelle.

Français

recalibrage des attributs

mise à l'échelle des attributs

changement d'échelle des attributs

Anglais

feature scaling

scaling

Sources

Livre - Aurélien Géron, trad. Anne Bohy - Machine Learning avec Scikit-Learn - Mise en oeuvre et cas concrets - recalibrage des attributs

Source : Google machine learning glossary