« Surapprentissage » : différence entre les versions


Aucun résumé des modifications
Balise : Éditeur de wikicode 2017
Aucun résumé des modifications
 
(29 versions intermédiaires par 5 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
[[Category:intelligence artificielle]]
<!--GDT-->
[[Category:GRAND LEXIQUE FRANÇAIS]]
[[Catégorie:Termium]]
==Définition==
==Définition==
Le surapprentissage ou surajustement (''overfitting '' en anglais) est un problème pouvant survenir avec les algorithmes d'apprentissage. Il est, en général, provoqué par un mauvais choix de modèle, typiquement un modèle trop complexe.


Le '''surapprentissage''' ou '''sur-ajustement''' ('' overfitting '') est un problème pouvant survenir dans les méthodes mathématiques  de classification pour les réseaux de neurones. Il est en général provoqué par un mauvais dimensionnement de la structure utilisée pour classifier. De par sa trop grande capacité à stocker des informations, une structure dans une situation de surapprentissage aura de la peine à généraliser les caractéristiques des données. Elle se comporte alors comme une table contenant tous les échantillons utilisés lors de l'apprentissage et perd ses pouvoirs de prédiction sur de nouveaux échantillons.
==Compléments==
De par sa trop grande capacité à stocker des informations, un modèle complexe dans une situation de surapprentissage aura de la peine à '''[[Généralisation|généraliser]]''' les '''[[Attribut|attributs]]''' des '''[[données]]'''. Le modèle se comporte alors comme une table contenant tous les données utilisés lors de l'apprentissage et perd ses pouvoirs de prédiction sur de nouveaux échantillons. Communément, on dira que le modèle apprend par cœur.


==Français==
'''surapprentissage''' 


Un modèle surajusté voit son efficacité décroître au-delà d'un certain seuil. Engorgé par trop de données, l'algorithme perd peu à peu son pouvoir prédictif.est un modèle statistique qui c contient plus de paramètres que ne peuvent le justifier les données.
'''surajustement''' 


En statistique, le '''surapprentissage''' ou '''sur-ajustement''' ou '''surinterprétation''' (en anglais « ''overfitting'' ») est une analyse statistique qui correspond trop étroitement ou exactement à un ensemble particulier de données. Ainsi, cette analyse peut ne pas correspondre à des données supplémentaires ou ne pas prévoir de manière fiable les observations futures. Un modèle '''surajusté''' est un modèle statistique qui contient plus de paramètres que ne peuvent le justifier les données1
'''surinterprétation'''  


==Français==
'''  surapprentissage  n. m.'''
''' surajustement  n. m.'''
''' surinterprétation n.m. '''
==Anglais==
==Anglais==
''' overfitting   '''
'''overfitting'''


''' overlearning '''  
'''overlearning'''  


''' overtraining '''
'''overtraining'''


==Sources==
[https://www.btb.termiumplus.gc.ca/tpv2alpha/alpha-fra.html?lang=fra&i=1&srchtxt=surapprentissage+&index=alt&codom2nd_wet=1#resultrecs TERMIUM Plus]


<small>
[https://developers.google.com/machine-learning/glossary/  Google, ''Machine learning glossary'']


[https://fr.wikipedia.org/w/index.php?title=Surapprentissage&oldid=161071239 Wikipedia - Surapprentissage.]
{{Modèle:GDT}}


 
[[Catégorie:GDT]]
 
[[Category:intelligence artificielle]]
[https://www.btb.termiumplus.gc.ca/tpv2alpha/alpha-fra.html?lang=fra&i=1&srchtxt=surapprentissage+&index=alt&codom2nd_wet=1#resultrecs Source : TERMIUM Plus]
[[Category:GRAND LEXIQUE FRANÇAIS]]
 
[[Catégorie:101]]
[https://developers.google.com/machine-learning/glossary/ Source: Google, ''Machine learning glossary'']
 
[https://fr.wikipedia.org/w/index.php?title=Surapprentissage&oldid=161071239  Source: Wikipedia, Surapprentissage.]

Dernière version du 3 avril 2025 à 10:08

Définition

Le surapprentissage ou surajustement (overfitting en anglais) est un problème pouvant survenir avec les algorithmes d'apprentissage. Il est, en général, provoqué par un mauvais choix de modèle, typiquement un modèle trop complexe.

Compléments

De par sa trop grande capacité à stocker des informations, un modèle complexe dans une situation de surapprentissage aura de la peine à généraliser les attributs des données. Le modèle se comporte alors comme une table contenant tous les données utilisés lors de l'apprentissage et perd ses pouvoirs de prédiction sur de nouveaux échantillons. Communément, on dira que le modèle apprend par cœur.

Français

surapprentissage

surajustement

surinterprétation

Anglais

overfitting

overlearning

overtraining

Sources

TERMIUM Plus

Google, Machine learning glossary

Wikipedia - Surapprentissage.