« Séparateur à vaste marge » : différence entre les versions
Aucun résumé des modifications Balise : Éditeur de wikicode 2017 |
Aucun résumé des modifications |
||
(23 versions intermédiaires par 4 utilisateurs non affichées) | |||
Ligne 1 : | Ligne 1 : | ||
==Définition== | ==Définition== | ||
Le séparateur à vaste marge ou SVM est un '''[[algorithme]]''' d''''[[Apprentissage supervisé|apprentissage supervisé]]''' issu d'une généralisation des classificateurs linéaires et destiné à résoudre des problèmes de '''[[classification]]''' et de '''[[régression]]'''. | |||
Créés au milieu des années 90 par Vladimir Vapnik, les SVM ont été appliqués à de nombreux domaines: bio-informatique, recherche d'information, '''[[vision par ordinateur]]''', finance, etc. | |||
Selon les '''[[données]]''', la performance des séparateurs à vaste marge peut être parfois du même ordre, ou même supérieure, à celle d'un '''[[Réseau de neurones artificiels|réseau de neurones]]''' ou d'un '''[[modèle de mélange gaussien]]'''. | |||
Voir aussi '''[[classificateur]]''' | |||
==Compléments== | |||
En français, on préfère le terme « séparateur à vaste marge » qui conserve l'acronyme «SVM», aussi parfois « machine à vecteurs de support », « classificateur à vaste marge » ou « classificateur à large marge ». | |||
Note: on dit séparateur à « vaste marge » et non séparateur à « vastes marges » car il n'y a qu'une seule marge. | Note: on dit séparateur à « vaste marge » et non séparateur à « vastes marges » car il n'y a qu'une seule marge. | ||
<hr/> | |||
Les SVM reposent sur une mesure de similarité calculé avec un noyau (en anglais, kernel). On dira que les SVM font partie des méthodes à noyau. En apprentissage automatique, l''''[[Astuce du noyau|astuce du noyau]]''' permet d'utiliser un classificateur linéaire pour résoudre un problème non linéaire. | |||
==Français== | ==Français== | ||
'''séparateur à vaste marge ''' <small> | '''séparateur à vaste marge ''' | ||
'''SVM''' | |||
'''machine à vecteurs de support''' <small>(<i>usage plus rare</i>)</small> | |||
'''classificateur à vaste marge''' <small>(<i>usage plus rare</i>)</small> | |||
''' | '''classificateur à large marge''' <small>(<i>usage plus rare</i>)</small> | ||
''' | '''méthode à noyau''' | ||
==Anglais== | ==Anglais== | ||
'''support vector machine''' | '''support vector machine''' | ||
''SVM'' | '''SVM''' | ||
'''kernel method''' | |||
==Español== | |||
''''' máquina de vectore de soporte/máquina de vector soporte ''''' | |||
''La máquina de vectores de soporte o SVM es un algoritmo de aprendizaje supervisado derivado de una generalización de los clasificadores lineales y diseñado para resolver problemas de clasificación y regresión. Fue creado a mediados de los 90 por Vladimir'' | |||
''Vapnik, las SVM se han aplicado a una amplia gama de campos, como la bioinformática, la recuperación de información, la visión por ordenador y las finanzas. Dependiendo de los datos, el rendimiento de los separadores de amplio margen puede ser a veces del mismo orden, o incluso mejor, que el de una red neuronal o un modelo de mezcla gaussiano.'' | |||
==Sources== | |||
Source: Canu, Stéphane. (2006). ''Apprentissage et noyaux : séparateur à vaste marge (SVM)''. Revue de l'Electricité et de l'Electronique. -. 69. 10.3845/ree.2006.062. | Source: Canu, Stéphane. (2006). ''Apprentissage et noyaux : séparateur à vaste marge (SVM)''. Revue de l'Electricité et de l'Electronique. -. 69. 10.3845/ree.2006.062. | ||
Ligne 32 : | Ligne 59 : | ||
[[Utilisateur:Patrickdrouin | Source: Termino]] | [[Utilisateur:Patrickdrouin | Source: Termino]] | ||
{{Modèle:101}} | |||
[[Category:GRAND LEXIQUE FRANÇAIS]] | [[Category:GRAND LEXIQUE FRANÇAIS]] | ||
[[Catégorie:101]] |
Dernière version du 22 juillet 2025 à 10:39
Définition
Le séparateur à vaste marge ou SVM est un algorithme d'apprentissage supervisé issu d'une généralisation des classificateurs linéaires et destiné à résoudre des problèmes de classification et de régression.
Créés au milieu des années 90 par Vladimir Vapnik, les SVM ont été appliqués à de nombreux domaines: bio-informatique, recherche d'information, vision par ordinateur, finance, etc.
Selon les données, la performance des séparateurs à vaste marge peut être parfois du même ordre, ou même supérieure, à celle d'un réseau de neurones ou d'un modèle de mélange gaussien.
Voir aussi classificateur
Compléments
En français, on préfère le terme « séparateur à vaste marge » qui conserve l'acronyme «SVM», aussi parfois « machine à vecteurs de support », « classificateur à vaste marge » ou « classificateur à large marge ».
Note: on dit séparateur à « vaste marge » et non séparateur à « vastes marges » car il n'y a qu'une seule marge.
Les SVM reposent sur une mesure de similarité calculé avec un noyau (en anglais, kernel). On dira que les SVM font partie des méthodes à noyau. En apprentissage automatique, l'astuce du noyau permet d'utiliser un classificateur linéaire pour résoudre un problème non linéaire.
Français
séparateur à vaste marge
SVM
machine à vecteurs de support (usage plus rare)
classificateur à vaste marge (usage plus rare)
classificateur à large marge (usage plus rare)
méthode à noyau
Anglais
support vector machine
SVM
kernel method
Español
máquina de vectore de soporte/máquina de vector soporte
La máquina de vectores de soporte o SVM es un algoritmo de aprendizaje supervisado derivado de una generalización de los clasificadores lineales y diseñado para resolver problemas de clasificación y regresión. Fue creado a mediados de los 90 por Vladimir
Vapnik, las SVM se han aplicado a una amplia gama de campos, como la bioinformática, la recuperación de información, la visión por ordenador y las finanzas. Dependiendo de los datos, el rendimiento de los separadores de amplio margen puede ser a veces del mismo orden, o incluso mejor, que el de una red neuronal o un modelo de mezcla gaussiano.
Sources
Source: Canu, Stéphane. (2006). Apprentissage et noyaux : séparateur à vaste marge (SVM). Revue de l'Electricité et de l'Electronique. -. 69. 10.3845/ree.2006.062.
Source: Lebrun, Gilles (2006). Sélection de modèles pour la classification supervisée avec des SVM (Séparateurs à Vaste Marge), thèse de doctorat, Université de Caen Basse-Normandie, 311 pages.
Source: Kharroubi, Jamal (2002). Étude de techniques de classement ”Machines à vecteurs supports” pour la vérification automatique du locuteur, thèse de doctorat, Télécom ParisTech, 129 pages.
Source: Fernandez, Rodrigo (1999). Machines a vecteurs de support pour la reconnaissance des formes : proprietes et applications, thèse de doctorat. Université Paris 13.
Source: Wikipedia, Machine à vecteurs de support
101 MOTS DE L' IA -
Ce terme est sélectionné pour le livre « Les 101 mots de l'intelligence artificielle »
Contributeurs: Arianne , Claude Coulombe, Jacques Barolet, Espanol: Jean-Sébastien Zavalone, Patrick Drouin, wiki
