« Apprentissage par renforcement avec rétroaction humaine » : différence entre les versions
Aucun résumé des modifications |
Aucun résumé des modifications |
||
(2 versions intermédiaires par 2 utilisateurs non affichées) | |||
Ligne 1 : | Ligne 1 : | ||
== Définition == | == Définition == | ||
En [[apprentissage automatique]], l'apprentissage par renforcement | En [[apprentissage automatique]], l'apprentissage par renforcement avec rétroaction humaine (ARRH) est une technique d'amélioration des performances d'un [[agent]] à partir de rétroactions humaines. | ||
On commence par entraîner un [[modèle de récompense]] sur des résultats annotés par des rétroactions humaines. Ensuite, on utilise ce modèle comme fonction de récompense pour améliorer la [[politique d'action|politique]] d'un agent à l'aide de l'[[apprentissage par renforcement]] grâce à un [[algorithme d'optimisation]]. | On commence par entraîner un [[modèle de récompense]] sur des résultats annotés par des rétroactions humaines. Ensuite, on utilise ce modèle comme fonction de récompense pour améliorer la [[politique d'action|politique]] d'un agent à l'aide de l'[[apprentissage par renforcement]] grâce à un [[algorithme d'optimisation]]. | ||
Ligne 52 : | Ligne 52 : | ||
[[Catégorie:GRAND LEXIQUE FRANÇAIS]] | [[Catégorie:GRAND LEXIQUE FRANÇAIS]] | ||
[[Catégorie:101]] | [[Catégorie:101]] | ||
Dernière version du 10 février 2025 à 18:04
Définition
En apprentissage automatique, l'apprentissage par renforcement avec rétroaction humaine (ARRH) est une technique d'amélioration des performances d'un agent à partir de rétroactions humaines.
On commence par entraîner un modèle de récompense sur des résultats annotés par des rétroactions humaines. Ensuite, on utilise ce modèle comme fonction de récompense pour améliorer la politique d'un agent à l'aide de l'apprentissage par renforcement grâce à un algorithme d'optimisation.
Compléments
Ce type d'apprentissage est utilisé dans les jeux AlphaGo et les générateurs de texte fondés sur les grands modèles de langues.
Le modèle de récompense est pré-entraîné pour que la politique soit optimisée afin de prédire si une sortie est bonne (récompense élevée) ou mauvaise (récompense faible ou pénalité).
Français
apprentissage par renforcement avec rétroaction humaine
apprentissage par renforcement et rétroaction humaine
apprentissage par renforcement à partir de la rétroaction humaine
ARRH
apprentissage par renforcement basée sur la rétroaction humaine
ARBRH
apprentissage par renforcement avec retour d'information humain
apprentissage par renforcement avec retour humain
Anglais
reinforcement learning from human feedback
RLHF
reinforcement learning from human preferences
Sources
Contributeurs: Arianne , Claude Coulombe, Patrick Drouin, wiki
